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on the Dynamic Response and Acoustic Radiation

of Flat Panels

John S. Mixson

ABSTRACT

A thin, flat, elastic plate of length L and infinite

width lies in the x-y plane. The rest of the x-y plane is

occupied by a rigid baffle that separates the upper z space

from the lower. A harmonic force drives the plate from

below, and a compressible air stream with a viscous boundary

layer flows parallel to the upper surface along the length L.

Linear partial differential equations governing the forced

response of the coupled plate-aerodynamic system are derived

along with appropriate boundary conditions. Solution of

these equations involves modal series solution of the plate

equation, Fourier transform of the aerodynamic equation in

the direction parallel to the plate, and Frobenius - series

or Runge-Kutta numerical solution of the resulting o.d.e.

with variable coefficients (due to the boundary layer) in

the direction normal to the plate. The aerodynamic solution

depends on the dimensionless ratios Mach number, Prandtl

number, temperature boundary condition, boundary layer

thickness and acoustic coincidence number. The plate

response solution depends in addition on the parameters



plate frequency ratio, density coupling number, plate

eigenvalue spectrum, and the force distribution. Numerical

results for Mach number, M, of 0.5 are presented to

illustrate the method of solution and the effects of boun-

dary layer thickness on the fluid pressures along the plate

and on the plate response. Calculations for limiting cases

are presented showing that the method produces appropriate

results for M = 0, and for M = 0.5 but zero boundary

layer thickness. The surface pressure distributions show

that peak pressure shifts forward and decreases slightly as

the boundary layer thickness increases. Variations of

boundary layer thickness caused large percentage changes of

the "virtual mass" and aerodynamic damping associated by

analogy with the fluid effects on the plate dynamic response.

Calculations of basic solution parameters for a linear

velocity profile and for a Blasius profile showed that the

same system response could be obtained from each profile

provided that an appropriate value of boundary layer thick-

ness was chosen for each profile.
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Chapter I

Introduction

The practical problem

Turbulent boundary layers are often formed on the sur-

faces of aircraft in flight. The response of the aircraft skin

structure to the fluctuating pressures associated with the

turbulence can lead to structural fatigue failure due to

fluctuating stress response,(1) and can lead to unwanted

transmission of noise from the boundary layer to the interi-

or of the aircraft.(2,3) The ability to predict the struc-

tural responses is required in order to design structures

that will withstand fatigue and that will minimize the trans-

mission of noise.

Panel-Aerodynamic Coupling

The response of aircraft structural panels is affected

in an important way by its coupling to the passing air

stream, in addition to the fact that the turbulence in the

air stream is driving the panel motions. When the panel

responds to the turbulence, its motion generates additional

pressures in the air stream; these pressures act on the panel

to alter its motion. The panel motion is thus coupled to the

pressure in the air stream in such a way that calculation of

the panel motion requires solution for the air pressures as

an integral part of the calculation. The importance of this

1



2

coupling has long been recognized as the key factor leading

to the instability known as panel flutter. (4 ,5 ) In addition,

some work has suggested that the coupling with a supersonic

air stream can introduce damping that is large in comparison

with damping from structural sources.(4,6) It has also been

found that coupling of panel motion with a heavy fluid, such

as water, can cause large reductions of the plate resonant

frequencies, compared to the in-vacuo natural frequencies.(7

Previous Panel Response Research

The mathematical difficulties involved in solving the

equations describing the motion of a flexible plate coupled

to a compressible, flowing air stream and driven by a statis-

tically random pressure field have led to the use of approx-

imations of various kinds. First, the aerodynamic pressure

field is separated into two parts that do not interact.(9)

One part is the random pressure field associated with the

boundary layer turbulence, which is taken to be given from

experimental measurements. The other part is the additional

pressures caused by the motion of the panel. The effects of

interaction of these two pressure fields apparently cannot

be calculated within the current state of the art. For some

simple types of structures, such as uniform spherical and

cylindrical shells and infinite flat plates the panel motion-

pressure interaction problem is simplified because the fluid
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pressures don't change or couple the in-vacuo normal modes

of the structure,(10) or because the panel motion can be

represented by a simple traveling wave. (1 1 1 2
'

1 3 ) In some

studies the panel pressures were not included at all, and

attention was thus focused on the statistical( 1 4 ) or plate

model(15) aspects of the problem. In other studies the ef-

fects of panel motion pressures were included as an equiva-

lent damping or radiation resistance factor, and numerical

values obtained from experiment. (1617) Aerodynamic piston

theory has been used to analyze the coupled response for air

stream Mach numbers greater than one.(1,6) This theory sim-

plifies the coupling of plate motion to aerodynamic pressure

because it relates the pressure at a point on the plate to

the motion at only a few points,rather than to the motion at

all other points of the plate, as is done in the more exact

aerodynamic theories.(9,18) For plates vibrating in water,

the "virtual mass" feature of the coupling has been included

but the damping feature not included.(19) Additional research

on various aspects of this plate response problem is described

in the papers referenced by Lin,(1) Dowell,(9) Strawderman,(1 4 )

Maestrello( 16 ) and Leibowitz.(19) All the work described in

the above papers contains the assumption that the gradients

of velocity and temperature associated with the boundary

layer do not influence the coupled dynamic response of the
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plate-fluid system.

Boundary Layer Effects

Recent research has shown that the thickness of the

boundary layer over a panel can have an important effect

on the flutter properties of the panel.(20,21) The exper-

imental results(2 0 ) show that the dynamic pressure at flut-

ter in the presence of a particular boundary layer was twice

the dynamic pressure value obtained (by extrapolation) for

zero boundary layer thickness. Calculated results( 2 1 ) also

show the large influence of boundary layer thickness on

flutter dynamic pressure. Because of the close connection

between panel response and panel flutter,(6,22) these flutter

results imply that the characteristics of panel response will

depend on the thickness of the adjacent boundary layer. Such

effects might also be expected on intuitive grounds. For

example, in the case of an extremely thick boundary layer

the fluid velocities existing at large distances from

the panel could be expected to have only small effects on the

panel motion, as compared to a thin boundary layer in which

the large velocities exist within a fraction of an inch of

the panel surface. Considerations such as these suggest

that it would be worthwhile to develop methods for calculating

the response of panels that are coupled to a passing air

stream through a boundary layer containing gradients of



velocity and temperature. Development of such methods is

the purpose of the work described in this paper.

The procedures developed by Dowell(
9 '2 1 ) for calculating

flutter of panels take into account the effects of velocity and

temperature gradients and are sufficiently general to allow

calculation of response as well. Dowell's method of solution

uses a combination of plate modal series expansion, Fourier

transforms in the direction parallel to the plate and finite

differences across the boundary layer to reduce the govern-

ing partial differential equations to ordinary differential

equations in time which are then solved numerically on a

digital computer. This procedure is very general and can

incorporate a great variety of phenomena such as plate non-

linearity, aerodynamic velocity and temperature gradients,

and transient input forces. When calculating results for

particular practical configurations this method is probably

the best type to use. Such great generality however, tends

to increase the computation effort required to obtain each

data point, and consequently increases the difficulty of

carrying out trend studies to explore the effects of bound-

ary layer thickness, for example, and increases the difficulty

of obtaining the statistics of the panel response from the

statistics of the forcing pressures of the boundary layer.

An approach alternative to the time domain solution of
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Dowell is the frequency domain solution. This procedure

makes use of either a harmonic time dependence or a Fourier

transform in time instead of the numerical integration in

time. The frequency domain solution appears to offer the

advantages of (1) requiring less difficulty in carrying out

trend studies, (2) allowing more straightforward develop-

ment of relations between input and output statistics, and

(3) allowing easier incorporation of simplifications such

as asymptotic solutions of integrals. The frequency domain

solution is used in the work described in this paper.

The Present Research

The purpose of the work reported herein, then, is to

develop methods for calculating the response of panels

coupled to a passing air stream through a boundary layer

using a frequency domain solution. In order to focus atten-

tion on the effects of the boundary layer, other aspects of

the problem are simplified. The structural panel considered

is uniform, flat, isotropic, elastic, initially un-stressed,

and responds in the linear, small-deflection, amplitude.

range. The panel has infinite width and finite length.

The flow is parallel to the panel length. The applied force

is harmonic, rather than random. The fluid is considered

to be compressible and Newtonian; its motion is taken in

two parts: (1) a large magnitude shear-flow motion parallel
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to the panel surface, and (2) an acoustic motion of infinit-

esimal magnitude and arbitrary direction. The large motion

is taken to be steady, laminar, and unidirectional. Viscos-

ity effects are included in the large motion, but are not

included in the small magnitude part of the flowo

The plan of this paper is: (1) derive appropriate

partial differential equations and boundary conditions gov-

erning the plate deflection and the fluid pressure, and

relate them to previously derived equations; (2) solve the

governing partial differential equations so that numerical

values of specific deflections and pressures can be obtained

using a digital computer; and (3) present results displaying

the effects of boundary layer thickness on panel deflection

and aerodynamic pressure.



Chapter II

Derivation of the Governing Equations

In this chapter the equations governing the response

of a coupled system consisting of a flat plate and a flowing

fluid are derived. In addition the boundary conditions on

the fluid, on the plate, and at the plate-fluid interface

are obtained. A general assumption used is that the response

is small, so that the equations to be obtained are linear in

the dependent variables of plate displacement and fluid pres-

sure. The system under consideration is shown in figure 1.

A flat rectangular elastic plate occupies a region of the

x-y plane; the remainder of the x-y plane is occupied by a

baffle, or rigid plate, that serves to separate the upper

half space from the lower and provide boundary conditions

at the edges of the plate and at the lower surface of the

fluid. A Newtonian flowing fluid fills the upper half space,

z > 0; the lower half space, z < 0, is empty. A known force

q(x,y,t) is applied to the plate surface. This system can

be thought of as an idealization of, for example, a small

panel in the surface of an aircraft wing or fuselage. In

the development of the equations particular attention is

given to the effects of velocity and temperature gradients

that form the boundary layer in the fluid near the plate,

and other aspects of the system are treated in simplifying ways.

8
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Figure 1.- Sketch of the plate-fluid system.
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The Plate Equation

A sketch of a small element of the plate showing the

forces acting is presented in figure 2. The equilibrium of

an element of the plate is governed by the equation(23):

DV 4 w = load intensity 1.

The load intensity acting includes:

a2w
the inertia reaction force, -pp -

the fluid pressure, -p

and the given external force, q.

Inserting these forces on the right hand side of equation 1,

and rearranging terms leads to the equation governing plate

motion:

DV4w + pp a 2 + p (x,y,O,t) = q (x,y,t) 2.
at

For the present work the pressure p(x,y,0,t) is the pressure

in the fluid that results from the plate motion w, thus

to solve equation 2 the relation between p ·and w must

be obtained from the governing fluid equation and must be

used in the solution. The pressure is a function of posi-

tion in space and time; the form p (x,y,0O,t) indicates that

the pressure at z = 0 is considered to be applied to the

plate surface. When there is no fluid present the pressure

is zero and equation 2 can be solved using known techniques.
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Figure 2.- Plate element and forces.
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In order to focus attention on the fluid boundary layer

effects a very simple type of plate has been assumed in ob-

taining equation 2. The plate is flat, has uniform thickness,

mass and stiffness distributions, and the plate material is

isotropic and elastic. There is no initial pre-stress and

the response is assumed to be in the linear, small amplitude,

deflection range. This simple plate is felt, however, to

represent some realistic systems.

The Aerodynamic Equation

The equation governing the pressure in the fluid is

obtained from the basic equations:

p*D(u*) = P*fb - Vp* + PV u* + jV(V.u*)/3 3.

D(p*) + p* V · u* = 0 4.

p* = R p* T* 5.

aut / au~
p* Cv D(T*) = axi (K .Di) - * xi + . +v ai i a .

axi T- _ 2 1 6.

These equations are, respectively, the Navier-Stokes equa-

tion governing a Newtonian fluid, the continuity equation,

the equation of state for an ideal perfect gas, and the

energy equation for a Newtonian fluid obeying the Fourier
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law of heat conduction. These six equations (equation 3 is

a vector equation) are sufficient to determine the six un-

knowns;pressure p*, density p*, temperature T*, and

velocity (vector) u*. All six are necessary to describe

the behavior of a compressible fluid.

The unknowns described by equation 3 to 6 are total

quantities. For example p* (x,y,O,t) is the total pressure

acting on the plate, whereas the pressure p(x,y,O,t)

appearing in equation 2 is only that part of the pressure

caused by the motion of the plate. The unknown "starred"

quantities are therefore divided into two parts, as follows:

u* =U + u a

P* = P P b
7.

P* = P0 + P c

T* = T + T d

where the quantities u, p, p, and T are related to the

motion of the plate, and vanish when there is zero plate

motion. The quantities U, p0, po, and To are the values

that remain when the plate motion disappears; for convenience

this flow condition is referred to herein as the basic flow.

Linear equations governing the "plate motion" quantities are

obtained as follows. Equations 7 are substituted into equa-

tions 3 to 6 and the terms of each resulting equation are
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divided into three groups. One group of terms contains only

basic flow quantities, U, p0, p0 , Tg, and disappears under

the assumption that the basic flow satisfies equations 3 to

6. Another group of terms contains squares and/or products

of the "plate motion" quantities, u, p, p, T, and disappears

under the assumption that u, p, p and T are small enough

that squares and products are negligible compared to the

linear terms. The group of terms remaining are the govern-

ing equations, however two additional simplifications are

made. First, it is assumed that viscous effects and body

forces are negligible under conditions of interest, so the

terms containing viscosity and body forces are deleted.

(Recall however that viscous effects were retained in the

equations describing the basic flow.) Second, it is assumed

that there is insufficient time for any heat flow to take

place due to plate motion, so terms involving heat flow are

dropped. The equations resulting from the above steps are:

P0 at + P0( U e Vu + u * VU) + p d(U) = -Vp 8.
p0 at 0 UV) d8

at+ (pU + V U + ) = 9.

p = R(p0 T + pT0) 10.

C v d(T
)

+ PCv(at + U'VT + u.VT0 ) = -POV.u-pV.U 11.

a( ) a ( )where d ( ) = - + U
Equa tions 8 to 11 form ax 

Equations 8 to 11 form a set of six equations that are linear
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in the six "plate motion" quantities u, p,p, and T;

therefore these equations together with given distributions

of the basic flow quantities U, p0, ,ot To and appropriate

boundary conditions should be sufficient for obtaining a

solution.

It should be noted that equation 10 was obtained from

the equation of state for an ideal gas, and that there is

no comparably simple equation for liquids.(24) In acousti-

cal studies use is made of a sound speed relation, instead

of an equation of state, but sound speed relations for

liquids are not simple. For example, one empirically deter-

mined polynomial equation for sound speed in water contains

terms up to fourth power in temperature and up to third

power in pressure.(25) It appears that extension of the

present research to flowing liquids, such as water, would

require that special consideration be given to an appropriate

equation of state. The present work is thus limited to an

ideal gas as the flowing fluid.

In order to solve equations 8 to 11 particular dis-

tributions in space and time must be obtained for the

basic flow quantities U, p0 , Po' and T
o
. The

distributions of interest for the present work are

those associated with a boundary layer on a flat plate.
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In addition the basic flow is assumed to be parallel flow;

that is, the boundary layer thickness is taken to be con-

stant in the direction of flow rather than increasing along

the flow direction, as actually occurs. This assumption

appears reasonable because parallel flow has been found

adequate for hydrodynamic stability studies.(26) In

addition the parallel flow assumption allows significant

simplification of the equations, while still retaining

important features of the boundary layer flow field, namely

the gradients of velocity and temperature in the direction

normal to the plate.

Instead of using equations 10 and 11 in further develop-

ments, the alternate equation

d(p)+u.Vp0 +pd(Po)/p0 = yRTO[d(p)+u.Vp0 +pd(P0 )/P0 ] 12.

will be used. The derivation of equation 12 is given in

Appendix A. The derivation makes use of the continuity,

state, and energy equations (equations 4, 5, and 6) to

obtain a pressure-density relation for the total quantities.

Equations 7 and the procedure described following equations

7 are then used to obtain equation 12 from this pressure-

density relation. Equation 12 is used in place of equations

10 and 11, and clearly displays the presence of gradient

terms in the pressure-density-sound-speed relation.
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Equations 8, 9, and 12 form a set of five equations in the

five unknowns pressure p, density p, and velocity u, and

will be used in subsequent developments.

Written out in full, equations 8, 9, and 12 are:

P au + PO au +0 at 0 ax

au
P at+

avt+ [U Fvav
Po '~ + Po av +

PO aw + Pc

a + u ap

ap + U p

at ax

.eT, ap(

au
ay

-0-
F au
P ax

av
ay

--Q-

0au au +

- P U

Z0 ax+

-0- -0-Q

avv a +
ay

-0-

ax

avv I+ay
-0-

wau +

13.

av]

P av+ ax+V + V + = - 14.at ax ay+ a + ay

aw+ aw+ + + w a +

p-C+pFu a aW aW aw 15

Po +ax ay+ -+ p - 2- ay 16.

-0- -0Q- -- D-'

+ v au av +a w + u ° + 1V 15. +
°0+ V + W a P + j aPO + v I + w +p +ay ax a y 

-d-- J- -0- -Z Pat

° + a ja + v Oay az ax ay ax aP t

-0-- --(>- -- -0-
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+P0 ' -O P O p- x + aV y + Wax ay az p0 at P0 ax ay az

17.

The assumption that the basic flowis steady deletes the under-

lined terms numbered Q . The assumption that the basic flow

is parallel implies that V and W are zero and that U depends

only on z(26)therefore the underlined terms numberedQ are

deleted. The assumption of parallel flow also implies that

the mean density p0 , pressure po and temperature To depend

only on z, therefore the underlined terms numbered 0 are

deleted. Finally, the usual boundary layer assumption that

variation of the basic pressure po over the boundary layer

thickness may be neglected leads to the deletion of the

underlined terms numbered ® o Using the short hand nota-

tion

d( ) - ( ) + Uat ax

the equations resulting from these assumptions are:

d(u) + w a = -1 p 18

d(v) = - 1 19.
P0 ay

d(w) = - p 20.
P0 az

d(p) + w 0 + P + + + 0 21.
; a0 v
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d(p) - yRTO [d(p) + w ao = 22.

Equations 18-22 can be reduced by simple substitutions, dif-

ferentiations and application of the operation d( ), to the

single equation for the plate motion pressure p:

12 d3 (p) - d(V2 p) + 2 U d (+z) = 0 23.
(P (2) 

+
2az axaz p0 az az

Equation 23 written out in full is:

2 3p + 3U a3 + 3U 2 + U3 
c Lat3 at2 ax atax2 ax

3 3 1 3 3 a3
+ 2 + i 3 2 + 2atax atay ataz ax axay axaz 

au 2 ao0 Ff2 2= 0 24.+ 2 a a 1 + po + U a = 24.
az axaz P0 az ataz axaz

Equation 24 is the equation governing the plate motion

pressure p, and is the equation to be used throughout the

remainder of this paper. The basic flow quantities required

for solution of equation 24 are the sound speed c, velocity

U, and density po0 all of which are functions of the space

coordinate z as is appropriate for a compressible mean flow.

Equation 23 has been obtained previously by Dowell,(2 1 )

and for an incompressible basicflow equation 24 reduces to

the equation obtained by Graham and Graham.(27) For classical
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inviscid aerodynamic basicflow the gradients of U, p0 and

T
0
vanish and equation 18 to 22 can be shown to reduce to

the classical convected wave equation:

a 2 2 22 2
+ at2U + = + 25.

at2 xat ax ay2 a

Boundary and Initial Conditions

The solutions sought are for "steady" acoustic behavior

in a steady basic flow. The steady state is considered to

have been established by starting from complete rest through-

out the system and continuing until transients have all died

out. The boundary of the fluid is taken to be so far away

from the plate that disturbances originating at the plate

never reach the boundary: consequently one of the space

boundary conditions is that for fluid locations far from

the plate the acoustic disturbances must have only outgoing

wave parts, or must be decreasing with increasing distance.

The boundary condition at the surface where the fluid contacts

the plate is basically that the fluid particles don't pene-

trate the plate. For the solution of the basic flow problem

where viscosity has been retained this implies the "zero

slip" boundary condition ordinarily used to derive boundary

layer flow solutions. For the acoustic motion the boundary

condition used allows particle velocities that are
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tangent to the deflected plate surface. This is done to

avoid the complications associated with boundary layer so-

lutions for the acoustic flow. The fluid velocity at any

point is given by

* = U + u,

= (U + u) i + vi + wk.

Resolving velocities at the plate surfaces in figure 3 and

requiring the velocity of the fluid normal to the plate to

z

Plate surface

U+u

WP

Figure 3.- Sketch of the velocity components at the plate
surface.

be equal to the component of plate motion normal to plate,

leads to
aw

w cos e -[U(z) + u] sin = P cos 26.

where w = plate displacement. But, linearizing implies

8, Wp, u, w << 1 and 27.

cos e = 1, sin 8 = tan 0 = P

This condition reduces equation 26 to

aw aw
wl -[U(z) + u]l xP= - 28.

z=0 z=0
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aw
But u --P is a product of small quantities, and U(z) z =

0.

Finally the boundary condition is

aw (x,y,t)
w(x,y,z,t) =t p 29.

z=0 at

To introduce pressure in place of w, introduce the momentum

equation:

aw + U aw= _ 30.
at ax PO az

On the plate surface U = 0, so equation 30 becomes

aw _ 1 E 31.
at P0 az

Combining equations 29 and 31 yields

2
awaw = - 0 I 32.

at z=O t2 PO (0) az z=O 320

This equation supplies the connection between the homogeneous

equation governing fluid behavior (pressure) and the non-

homogeneous plate equation.

For the case of constant basic flow, equation 28 becomes

aw aw
w(xyz,t) a + U a 33.

z=0 at ax at ax p

Combining equations 30 and 33 leads to
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10 = ( a + ua) w = (at + Ua2) (at + Ua() p.

So the boundary condition for the constant basic velocity case

is

aP I = - po(O) (a- + U i) (a- + U -a) w 34.z z=O at ax at ax P



Chapter III

Solutions for Plate Response and Acoustic Pressure

In this chapter solutions are obtained for the system

of equations and boundary conditions obtained in Chapter II.

The solutions obtained are also shown to reduce to known

special cases. Attention is focused on the effects of the

boundary layer; other aspects of the solution are simplified.

For continuity of presentation the plate equation solution

and the acoustic equation solution are each given as a

separate unit, however, it will be observed that the solu-

tions of the two equations are interdependent. Thus the

effect of the fluid pressure due to plate motion is inclu-

ded in the solution for plate motion. Therefore, these

solutions could be used to study panel flutter or stability

of a boundary layer as well as panel response.

The Governing Non-Dimensional Equations

The equations to be solved are given in Chapter II,

equation 2 governs plate motion, equation 24 governs the

fluid pressure, and equation 32 governs the boundary condi-

tion that couples the plate motion to the acoustic pressure.

Additional boundary conditions require that waves be out-

going at large distance above the plate, and that plate

displacement be zero in the region of the x-y plane occupied

by the baffle (see fig. 1). For simplicity only harmonic

24
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forces, and therefore harmonic responses, will be considered.

Only the steady state part of the solution, not the transient

part, will be determined. In addition, the plate will be

taken to be infinitely wide and the response will be taken to

be independent of the y coordinate. These assumptions are

expressed mathematically by putting the force in the form:

q(x,y,t) = q(x) exp(iwt), 35.

and by putting the responses in the form

wp(x,y,t) = w(x) exp(iwt) a 36.

p(x,y,z,t) = p(x,z) exp(iwt) b

Greater efficiency in the solution will be obtained by using

the following non-dimensional quantities:

A

x = xL
'^ 37.

z = zL

w = wL

2 2^
P = Po (°) WL p

2 = pp 2L4/D

P = P0 (O)L/pp

q = qL /D

Note that in these equations D is the plate stiffness pa-

rameter (not the differential operator) and p is the mass



26

ratio (not viscosity). Substitution of equations 35, 36,

and 37 into the dimensional governing equations leads to

the non-dimensional governing equations:

4^
a 2 ^

2 

^ ^

^- 2 w + p(x,O) = q 38.
ax

_ |^ = w (on the plate) 39.
az z=O

2^ 31

and ip -(3U/Lw) + 3i (U/Lw) (/3 
ax ax2 ax3

-i (c/L) [ + F4 ]- (U/L)(c/L) [LA' + 1
lax az ax axaz

+ 2 (c/Lw)2 (U/Lw)/Pz ^ + (c/Lw)2 1 0 ['+

+2 (c/Lw)2[(U/Lw)/ax z (c/Lw) z

2^ 1
(U/Lw) r4 = 0 40.

axaz

In the following sections of this Chapter solutions are de-

veloped, first for the plate equation 38, then for the

fluid acoustic equation 40 using boundary condition 39.

Solution of the Plate Equation

Reduction to Matrix Equation,- The plate differential

equation 38 can be reduced to a matrix equation by means of

an eigenfunction expansion as follows. First orthogonal

eigenfunctions are obtained for the differential operator
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by solution of:

4^
aw 

m w 41.

Simple support boundary conditions are used herein.

The orthogonality condition requires that

Wn () (x) = i when m = n

= 0 when m i no 42.

Then the plate displacement w (x) is expressed in the series

of eigenfunctions wm (x) as

N

w(x) = 2 an Wn(X) 43.

n=l

where the unknown coefficients an become the dependent

variables to be found instead of w(x). Substitution of

equation 43 into equation 38, followed by the standard use

of the orthogonality condition 42 leads to the equation:

2 2 1 ^
am ( m - 2) + 12 p(x,O) w (x) dx =Qm 44.

where the generalized force Qm is given by

QM = q(x) Wm(X) dxo 45.

Further reduction of equation 44 can be made using knowledge

of the form of the solution of pressure p(x,O). As shown
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in the next section of this Chapter, solution of the acoustic
A A

equation for p(x,O) can be carried out using the Fourier

transform pair

p(k,z) = J p(x,z) exp [-ikx] dx a

46.

and p(x,z) = 2 f p(k,z) exp [ikx] dk b

and the series expression for transformed pressure p

N
O^^ A an

^ ^

p(k,z) =L an Pn(k,z)) 47

n=l
The an in equation 47 are the same as the an in equation 43.

Substitution of expressions 46b and 47 into equation 44,

interchange of the order of integration and summation, and

use of the definitions

Zm(k) =0 wm(x) exp (ikx) dx 48.

and X
1 0 

Bmn = I2 J ZM(k) Pn (k,O) dk 49.

reduces equation 44 to the form

N

a(XA_ -2)2 + -P2 ' B a Qm 50.
m m G in mn n i

n=l

Equation 50 is the basic equation to be solved for the un-

known coefficients a
m
. The a

m
determine the plate
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displacement and the fluid pressures through the relations

N

w(x,y,t) = L e an Wn (x) 51.

n=l
N X

^-^ ~ 2L 2/2 W eiWt a f ^
p(x,y,z,t) P(O) L /2) e a

n
Pn(k,

n=l -

ikx Az)e dk52.

Equation 51 has been obtained by combination of equations

36, 37, and 43; the w (x) must be found from the eigen-

value problem equation 41 together with boundary conditions

at the edges of the plate. Equation 52 has been obtained

by combination of equations 36, 37, 46, and 47; the functions
O ^ ^

pn(k,z) must of course be obtained by solution of the acous-

tic equation.

When the parameters entering the dimensionless equations

38 and 40 are given, the only unknowns in equation 50 are

the a
m
. Then equation 50 can be used to form a matrix equa-

tion that can be solved for the vector {a1 a2 ...aN} using a

procedure such as Gauss elimination. Equation 50 contains

the coupling between the plate motion and the acoustic (aero-

dynamic) pressure in the term B , therefore the stability

properties (flutter, hydrodynamic instability) of the plate-

fluid system can be obtained by appropriate solution proce-

dures. In the present study, however, the system is assumed

to be stable and the solution sought is the magnitude
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of the plate displacement and the acoustic pressure when

a given force Qm is applied. In addition, the present

study is concerned with the effects of boundary layer

profiles on response, rather than with the complexities

of solution of equation 50, therefore approximate response

solutions of 50 are developed in the following sections.

Solution for small mass ratio V.- Equation 50 holds

for each value of m from 1 to N. When all N equations are

written out they can be arranged in the following matrix

form:

[-a-]{a} + 14 [B] {a} = {Q}, 53.

where
a 

a C12a2) 2 [- a~3 =O O. ,j =0 (2{a} [-a L] =a 

aN aN

11 12 .. B1N Q

[B]= B21 B22 B2N and {Q} Q

N1 BN2 ... BNN

To solve equation 53 it is assumed that p << 1, so the

solution can be expressed as

{a} = {a}0 + P{a}l + 2 {a}2 +0 1 2FrIa, 

54.

55.

02
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Substituting 55 into 53 and equating coefficients of each

power of p leads to the solution

{a} = [c]-1 ([I] - p[B][a]
-

1 ) {Q} + O( 2 ) 56.

When higher order terms are dropped, equation 56 yields

the following expression for each am

N

am =[1 - Bmn 2 Qn/[Qm(Xn - )] Qm/( _m2 )

n=l 57.

Using the Bmn found from solution of the acoustic equations

the am from equation 57 are used in equations 51 and 52 to

obtain the plate displacement and the acoustic pressure.

Solution of the Acoustic (Aerodynamic) Equation

The acoustic pressure is governed by equation 40, sub-

ject to the boundary condition equation 39 and a radiation

condition. The procedure for solution of equation 40 uses

a Fourier transform in the x variable to reduce the partial

differential equation to an ordinary differential equation

whose solutions are expressed in transfer matrix form.

Reduction to an Ordinary Differential Equation° - The

transform pair for pressure, equation 46, reduces the part-

ial differential equation 40 as follows0 Equation 40 is
AA

multiplied by exp(-ikx) dR, integrated from - - to - , and

the integrals reduced by integration by parts. The resulting
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o

equation governing the transformed pressure p is

20 +McU A

d· 2Mc au +1 0o A+) 1- k2p=O 58.
z2 L+CMU aZ Oa J az l C / J
Similar transformation of the boundary condition equation 39,

and use of the series expression for w(x) yields

0

8z z=0

N

= Z* (k) ann=l n
n=l

59.

Equation 58 is linear and homogeneous, therefore the solution

will depend linearly on the boundary conditions, equation

59. As a result a solution can be obtained for each term of

the boundary condition series and the complete solution is

then the sum of these separate solutions. For convenience

the an are included in the series expression as follows:
n

N
o ^ A^ 0
p(k,z) = L an Pn (k,z)

n=l

(47.)

o
It is now clear that each Pn must satisfy equation 58 and

the boundary condition

O

azP 
z=0

= z* (k)n 60.

Additional radiation boundary conditions must also be inclu-
o

ded. We now observe that when pn is obtained from equations
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58 and 60, the result is to be inserted into equation 49 to

obtain the Bmn which are then used to obtain the a
m

coef-

ficients from equation 57. Finally the am determine the

plate displacement and pressure by equations 51 and 52.

General Solution by Transfer Matrix.- Equation 58 is

an ordinary differential equation with variable coefficients.

The coefficients are variable as a result of variations,

through the boundary layer, of velocity U = U(2)/U , density

pO(Z), and sound speed c = c(z)/c . In general the solu-

tions will not be obtainable as known functions, so numerical

procedures must be used. In addition the boundary conditions

0
are in two parts, that is, to obtain p at z=0 one boundary

condition on ap/az is given at z=O and the radiation condi-

tion is applied at some large value of z. A convenient means

of expressing the solution for these conditions is transfer

matrices.(28) Before carrying out the solution the radia-

tion condition will be developed.

For the profiles of interest in this study the coef-

ficients of equation 58 are constant for very large values

of z because of the boundary layer nature of the basicflow

velocity, density and sound speed. In order to apply the

radiation condition it is assumed that U, c and po are

exactly constant for all values of Z > 6. Then 6 is the

dimensionless boundary layer thickness. It is now convenient

0o o
to change the independent variable to z where: z = 6 z
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The governing equation and boundary conditions are now:

a Pn 2Mc au 1 aPolapn
°2 - +- -- O+

az _l+McU az PO az az

and
0

aPn I

z=O
6 Z*(k)n

2 2^2 0
- 1 6k =0,

61.

62.

o

Now, outside the boundary layer (z > 1) equation 61 reduces

to

20

7 [ + M) 2 1] 62 k P = 63
az c

Equation 63 has constant coefficients and solutions

o o O
Pn = An exp (iaz) + Bn exp (-iaz), 64

If

65.a2 = [(1 + M) -1 6 k > 0;
c

and
0 0 0

Pn = Cn exp (bz) + Dn exp (-bz),

If

2 2
a = -b < 0.

Substitution of solution equation 64 into the pressure ex-

pression equation 52 shows that only outgoing waves will be

66.

67.
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present if A
n

= 0. Outgoing waves have the form exp (iwt -

iaz). Substitution of equation 66 into the pressure equation

52 shows that only decreasing pressures will be present if

Cn = 0. Now the procedure for solution of equation 61 sub-

ject to the "radiation" condition and boundary condition

equation 62 can be summarized as follows. Equation 61 will
O O

be solved for 0 < z < 1, the resulting Pn will be forced to

satisfy boundary condition equation 62 at z=0, and be matched

at z = 1 to the solution

O ^O O

pn (k,z) = Bn exp (-iaz), 68.

if a2 > 0 ;

or to the solution

O ^O O

pn (k,z) = Dn exp (-bz), 69.

if a < 0 .

This procedure can be carried out efficiently using the trans-

fer matrix technique. The transfer matrix idea is to relate
0o 

the pressure Pn and.the derivative of pressure pn at any
0o

two values of z by the relation

{ Tll T12 

Pt T 70.o 0 [f T 21 T 22 
Z=Z1 z=Z2u

The values of the Tij depend of course on the two values of
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o O

z. To apply the boundary conditions at Zl= 1 and z2 = 0

we use equations 68, 69 and 62 in 70 to obtain

T11 12 Pn (k,O)
B e- i=L 1171.

-ia = T21 T22 n

2
when a > 0;

and

D -bj1? [T11 T1 2 nk, 0) I 72.
ne -b [T2 1 6 Z*

when a2 < 0.

Equations 71 and 72 each form a set of two linear algebraic
o o

equations in the two unknowns Pn and Bn, and Pn and Dn,
0

respectively, and can be solved for Pn to obtain:

O ^

pn (k,O) = -6Z* (ia T1 2 + T2 2 )/(ia Tll + T 2 1), 73.

when a2 > 0;

and

0 ^

p (k,0) = -6Z* (b T1 2 + T 2 2 )/(b T + T 2 1) 74.

when a2 < 0.

Derivation of the Tij for given coefficients of equation 61

can be carried out using standard numerical techniques;

examples are presented in later sections of this paper. The
e

expressions 73 and 74 for Pnare now the final results required
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for the computation of plate displacement and pressure

using equations 51 and 52.
O A

The solution procedure is as follows. Values for Pn(k,O)

from equations 73 and 74 are inserted into equation 49 to-

gether with the mode transform Zm(k) to obtain values of Bmn

These values are used in equation 57, along with the general-

ized forces Qm and values of the parameters, to obtain the

series coefficients am . The am are then used in equations

51 and 52 to obtain the plate displacement and acoustic pres-
A

sure. In order to obtain pressure at a non-zero value of z
0A A^ ^

from equation 52, values of pn(k,z) are obtained from the

transfer matrix equation 70 using the particular values z1 =
A O A O O ^

z/6 to obtain pn(k,z), and z2 = 0 where pn(k,0)is known.

Solution for T by Numerical Integration.- In general

the coefficients of equation 61 will be sufficiently comp-

licated that analytical or series solutions will be imprac-

tical, therefore numerical integration must be considered.

Two regions of numerical solution must be considered; one

region near the singular point of equation 61, and the other

region covering the rest of the interval 0 < z < 1.

The singularity of equation 61 is associated with the

zero of the denominator of the coefficient of the first de-

rivative term. The location of this singularity on the k

axis is of interest because of the integrations on k that

must be carried out to obtain Bmn and pressure. Themn
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o O
coefficient of 3pn/az is singular where

^ O

1 + MXk U (z) = 0 75.

In this expression c = kX has been used. Equation 75 shows
^ A ^

that when k > 0 there is no singularity; when k < 0 but Iki
0

< 1/(XM) there is no singularity because the velocity U(z)
O A

has values in the interval 0 < U(z) < 1; and when k < 0 and
O0

Jkl > 1/(XM) the singularity is located at values of z

obtained from the equation

o ^

U(z) = 1/(M/Ikl 76.

A sketch of these results is shown in figure 4.

i

l No singularity
in this region

1.0

z at singularity

k
-1/MX 0

Figure 4.- Location of singularity in equation 61.
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The particular shape of the curve locating the singularity
o

will depend on the particular variation of U(z). Solution

of equation 61 in the region near the singularity could be

carried out using a Taylor series expansion of the coeffici-

ents and a power series solution of the equation.

Solution of equation 61 in the region away from the

singularity can be carried out using the procedure of ref-

erence 28. To begin, change notation so that equation 61

appears as

2UP - a(z) + b (z) p = 0. 77.
az az

o o
The definition of a(z), b(z) and p can be seen by compari-

son of equation 77 witn equation 61. Next define

0
Z
1

P = p , and z = s 78.
az

so that now equations 77 and the second of these relations

can be written

as [-b(s) a(s1 Z2 79

Equation 79 is the same form as equation 5-45 of reference

28, therefore 79 has the solution presented in the reference.



40

Writing

{Z} = and [A(s)] = -b(s) 80.

the solution obtained from reference 28 is

where k = hA(Sn)Zn kl = hA (sn + (Zn + 

k2 = hA (sn + (Zn + 

k3 = hA (sn + h)(Zn + k2)

A(sn), A(sn + h), and A(sn + h/2) are, respectively, the

values of the matrix A(s) at the sections n and n + 1 and

at the section midway between n and n + 1.

Combining the above unnumbered equations gives the

relation between Zn+l and zn :

n+l [(sn)+ (sn + h) )]

+ h [A ( hA(s + A(sn + h)A(s+) +

A2 (Sn + )] + 3 [A2( + ) A( 
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+ A(sn + h) A 2 (s
n

+ + A(sn + h) x

A2S nA (s + ) A(s) Zn 81.

where the contents of the braces represents the transfer

matrix linking the state vectors Zn and Zn+l Equation 81

relates Z at two closely spaced points. To relate Z at

two arbitrarily spaced points in z, write 81 as

{Z}n+l = [tn]{Z}n

and then combine by substitution for several values of n

to obtain

{Z}N = [tN-l][tN_2] ... [t2 ][tl][t0]{z 0 , 82.

where N is the number of the station corresponding to the

desired value of z and 0 denotes the station where the

vector {Z} is known. Reverting to the notation 78 and

combining the product of the [ti] matrices into a single

matrix, equation 82 appears as

0z [ 2 0

z=z1 z=z0 83.

The Tij appearing in equation 83 are the required transfer

matrix elements for use in equation 70.
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Solution for Ti· by Series for Mach No. < 1.- Tempera-

ture profiles presented in reference 29 indicate that the

rise of temperature in a compressible boundary layer is not

large when Mach number is less than 1. For these Mach num-

bers a reasonable approximation is that sound speed ratio,

c = c(z)/cm , is unity and that density p0 is constant. In

addition, the velocity profiles presented in reference 29

suggest that the simplest representation having the charac-

ter of a boundary layer profile is:
0 O

velocity ratio U = U(z)/UX = z 84.

While this representation is not a closely accurate descrip-

tion, it does have two advantageous uses. First, equation

84 does represent the general character of the boundary

layer profile, therefore results obtained using it are ex-

pected to be at least a first approximation to the correct

results. This linear description has been used previously

in acoustic studies.(27) Second, use of the description

84 leads to a reasonably simple equation governing pressure,

such that solutions can be obtained in series form. These

series results can be compared with results from the numer-

ical integration procedure to help gain confidence in the

results of both procedures by providing two independent

solutions. Having this confidence the numerical integration

procedure can then be used to obtain more precise results

using more realistic representation of the boundary layer
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profile. No essential increase of difficulty appears to be

associated with the inclusion of temperature variations in

the numerical integration technique.
0

Using the representation c = 1, P0 = constant and U = z

equation 61 becomes

20 1
a Pn 2Mc Pn 1+Mcz 1 22 0
02 ^ ^ + c 6 n 85.
az l+Mcz az c J

Introducing the notation

^O O

x = 1 + Mcz P = PnMcz = Pn

^2 2^2 ^2 2 86.a= 6 /M c 6 /M

reduces 85 to

x p" - 2xp' - (6x2 - ax4 ) p = 0 87.

Equation 87 has a regular singular point at x = 0, and can

be solved in series form in the neighborhood of the singular-

ity by the method described in reference 30, Theorem 4.4,

p. 188 (Frobenius method). The solution obtained is:

p(x) = A P1 (x) + B P2 (x) 88.

where

pl(x) = ix13 I1 + a2 x2 + an xn/[n(n+3)] 89.
n=4

n even
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with a0 = 1, a2 = .1, an = an-2 - an-4

and
A0

p2 (x) = 1 + a2 x2 + an xn/[n(n - 3)] 90.

n=4
n even

with a
0

= 1,

a2 = -.55,

an = B an-2 a an-4

From the theorem of reference 30, the series appearing in

equations 89 and 90 are convergent. Equations 89 and 90

show that Pl(x) and P2(x) are defined for both positive and

negative values of x, and are finite and continuous at x =

0. Because Mach number M appears in the denominator of a

and B, the solution 89 and 90 may converge slowly for small

M. The reduction of this solution to the limits M = 0 or

6 = 0, M Z 0 to demonstrate reduction to known solution

does not appear to be straightforward. For these reasons

a second series solution is developed.

In the neighborhood of an ordinary point of equation

85 a series solution can be obtained by the method of ref-

erence 30, theorem 4.1. The solution obtained by that

method is:

z) 91.O O

pn (z) = c fl (z) + D f2 (z) 91.

where



o o 2 o 3 o 4 On
fl(z) = 1 z +2 + a 3 z + a 4 z + anz

n=5

with a
0
=1 a1 =0

1 2 ^2
a
2

= 1 
^

a2 =T-1 62 [1 - c ]

1 2 ^2
a3 = -Mc6 [2 - c i3

a
4

= 2[1 c 

and 0

0 0 2 03 04 + On
f2(z) = z + a2 z + a3 z + a4 +E an z

n=5

with a0 = 0, al =1

a2 = Mc

a
3

= [M2 2 _ 1 ^2 [l - c2]

1 ^^2 ^2
a4 = - Mc6 [2 - c I

O O

and, for both fl(z) and f2(z)

(A 2 ^

an = -(n-l)(n-2)Mc an_1 + 2(n-l)Mc an 1 -[1-c ] 6 an_2

2 A 2 2^2 M 3 ^3 232
-[3-c ] Mc6 an-3 -3M c 6 an-4 c M 6 an

/[n(n-l)].

The function Pn(z) defined by equations 91-93 can be used

to obtain the transfer matrices for use in equation 70. The

particular transfer matrix relating pressure on the plate
0

surface z = 0 to pressure at the ddge of the boundary layer

45

92.

93.
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o o
z = 1 is obtained as follows. The relation for Pn and

its derivative can be written as

Pn_ 1 0 2 0 a09
0o fl(z) f2(z)

z

o
Evaluation of the f matrix for z = 0 using equations 92

and 93 shows that

Pn a0
0o a 95.
P' a1

z=0

Combining equations 94 and 95 and evaluating at z = 1 shows

that the transfer matrix elements required for solution of

equations 73 and 74 are given by

iT11 T 12 fl(l) f2(1)

T2 T 22 fi(l) f2 (l)

Solution for Zero Boundary Layer Thickness

The solution procedures developed in this Chapter can

be checked by comparing a pressure distribution for zero

boundary layer thickness with the pressure distribution pre-

sented in reference 31 based on inviscid aerodynamic flow.

The pressures given in reference 31 are based on an elastic
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plate of infinite extent undergoing displacements in the

form of a traveling harmonic wave. The pressures for this

situation are obtained using the method of this thesis

starting with equations 39 and 40. Equations 39 and 40, and

the "radiation" boundary condition, are sufficient to deter-

mine the pressures for a given plate displacement w . A

traveling wave in the plate can be represented as

w (x,y, t) = a0 exp i (wt + kx), 97.

and the pressure solution corresponding to this plate motion

can be written as

p (x,y,z,t) = a(z) exp i (wt + kx) 98.

Converting to non-dimensional quantities and substituting

equations 97 and 98 into equations 39 and 40 leads to the

results that a(z) must satisfy the ordinary differential

equation 58, (and therefore 85), subject to the boundary

conditions of "radiation" at z -+ X and

aD

az a0 99.
z=O

This boundary value problem is the same as that satisfied
o ^

by Pn when Z*(k) is replaced by "a0", as can be seen

from equations 58-60. (This result suggests the following
0 O 0 0 0

interpretation of the pn(k,z): pn(k,z) represents the
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pressure in the fluid due to an infinitely long harmonic

wave on the plate surface traveling with wave speed w/k

and wavelength l/k. The function Z*(k) determines the

amplitude of each wave component so that the sum of all the

traveling waves on the plate will form the model function
^ A 0 ^

wn(x).) Therefore the solution derived for pn(k,0)can be

used for a, with Z* replaced by "a0 " From equation 74, then 0

solution for a is

a(k,O) = -6a
0

(b T1 2 + T 2 2 )/(b T 1 1
+ T 2 1 ) 100.

Note that this solution, derived for a2 < 0, reduces to

the solution (equation 73) derived previously for a2 > 0.

The T.. are related to the series solutions of the governing
o o

equation 58, fl(z) and f2(z) by

T11 T12 ] f1 () f2 (l)

[=T 2 3 . ] (96)

T21 T22 if(l) f (1)

The function fl and f2 and their derivatives can be evaluated

for zero boundary layer thickness 6 = 0 from equations 92 and

93 to obtain

T ll T12 1 1 +Mc 3 M
2

+c2
IT21 T22] A2 101.

T1 T2 2 0 1 +2Mc + M c2
L J L122 
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Substitution of the Tij from equation 101 into equation 100

yields

^ ^A, ^ 

a(k,0) = - a (1+Mc)// c -(1+Mc) 102.

Substitution of 102 into the dimensional pressure expression,

equation 98, yields

p(x,O,t) = -p0 2 L2 X a0 (l +Mc)2 / / c2-(+Mc)2 exp i(wt+kx)

103.

Comparison of this result with the pressure expression given

in reference 31 must take account of the use by reference 31

of a coordinate system moving at the free stream velocity U;

and the use of a wave moving in the positive x direction,

whereas the wave described by equation 97 is moving in the

negative x direction. The coordinate relative to the moving

axis x' is related to the fixed axis x by

x' = x - Ut

and the speed of the wave relative to x' is

c' - U 104.

Using the definition of c leads to

(l+Mc) = 1 + ( )kL)()= -(} + U) 105.

so the pressure expression equation 103 reduces to

p(x,O,t) = -poc,2 a k [1-(T 2 exp i(-k) [c't-x']
0 11 c ~106.
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When the names of the variables in equation 106 are changed

to agree with the notation used in reference 31, the pres-

sure expression, equation 106, is the same as the expression

for surface pressure obtained by combining equations (2.4a)

and (3.5) of reference 31. This result lends confidence in

the correctness of the analysis methods used in this paper.

Computations

The computation procedures used to obtain numerical

values of plate displacement and acoustic pressure are de-

scribed in this section. The primary quantities required

to obtain displacement from equation 51 and pressure from

equation 52 are the coefficients an and the pressure

quantities pn (k,z).

The coefficients am are determined from equation 57,

the approximation for small j :

am = [1 - nS B 2Qn/[Qm2n - 2 )Qm) /(m-Q2) (57)
n=l

To determine am the quantities Bmn and Qm are needed:

1 n m0
Bmn 2 J Pn(k,O) Zm(k)dk, (49)

1 AA
A A A ikx̂

where Zm(k) wm(x) e dx; (48)

1 4
and Qm = q(x) wi(x) dx. (45)
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The eigenfunctions wm(x) and eigenvalues X
m

are obtained

by solution of

4^ ^
aw (x) ^ 

m4 = m Wm (x) (41)
ax

subject to boundary conditions at x = 0 and x = 1. For the

conventional simply supported boundary conditions where

plate deflection and moment are zero at both ends of the

plate the solutions of 41 are

w (x) = VT sin m X x, X = (m7)4 107.

From these eigenfunctions equation 48 yields

A m m

Z (k) = m 1-(-1)mcos k -i (-1)msin k 108.m 22 2_2

The real and imaginary parts of Zl(k) are illustrated in

figure 5. Figure 5 shows that the Zm functions decrease

in magnitude quickly as k increases, indicating that inte-

grals such as equation 49 need not necessarily cover a

large range of k.

The force distribution used in these computations is

q(x) = VT sin orx 109.

so the generalized force Qm' equation 45, is

Qm = 1 for m = 110.

Qm = 0 m 1
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Zlr(k) = Z1 r(-k)

Zlc(k) = -ZlC(-k)

Ak

Figure 5.- Transform of the mode function.
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Using this result, and the eigenvalues from equation 107,

in equation 57 leads to the expressions for the first few

coefficients a

a = [1 - (T Bll _2 /( 4 _ Q2)] /(r 4 2 ) a

a2 = -1 B2 1 Tr/_i4- 2)(2 -_ 2)] b 111.

a3 = -P B3 1 2/r_ Q )(3 -_2)c

For Q2 very nearly equal to 4 the first coefficient al is

large compared to the other am, therefore for this study

it is assumed that am = 0 for m f 1 and equations llla is

used for al. Using this result the plate displacement and

pressure are written:

w(x,t) = all sin 7x e

112.

o^ ^^
p(xzft) (aLr/2T) a(ol a1 Pl(k,z)ed dk

O A

The next quantities required are the Pn(k,z) so the integrals

in equations 112 and 49 (the Bn integral required for cal-

culation of a1 ) can be evaluated. The expressions for the

n(k,O) are (only p1 is needed):

Pl(k,O0) = -6 Z* (ia T12 + T 2 2 )/(ia T1 1 + T2 1) (73)

when a2 > 0;
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and

O ^

Pl(k,O) = -6 Z* (b T1 2 + T2 2 )/(b Tll + T2 1 ) (74)

when a2 < 0.

The transfer elements are given by

T11 T12 = [fl(l) f2(1) (96)
(96)

T21 T22 () f2(1)

and the functions fl and f2 used here are the series expres-

sions derived for small Mach number, equations 92 and 93.
O ^ ^

To evaluate pn(k,z) the general form of the transfer matrix,

equation 70, is used, to obtain

O ^ ^ - ^ O 

Pn (k,z) = T1 1 Pn(k,O) + T1 2 Pn(k,O) 113.

For these calculations pressures were calculated only on the
0o 

plate z=0 and at the edge of the boundary layer z=l. On the

plate surface

Tll = 1 T12 = 0 114.

and at the edge of the boundary layer

T _

T11 = Tll, T1 2 = T 1 2 115.

The real and imaginary parts of pl(k,0) are defined by

0 6[r 6pl
Pl(k,0) = -A Z + i 116.

6p rp
The quantities r and are shown in figures 6 and 7The qun- --- are shown in figures 6 and 7
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plotted as a function of c for Mach number of 0.5 and sev-

eral values of 6/X. Figure 6 shows that for moderate values

6Pcof 6/X the curves for -- are smooth, so no numerical dif-

ficulties were anticipated in numerical integration of this

function (and none were encountered). Figure 6 also shows

that, as the value of 6/X becomes smaller, the curves ap-

proach the curve for 6/X = 0. This result provides numerical

support for the result obtained previously by analytical me-

thods.

6pr
Figure 7 shows that the real part -r is a smooth func-

A

tion except in the region c - -.65. Further examination

6pr O ^
shows that , and therefore pl(k,O), has a singularity in

this region of c; the exact value of c depends on the Mach
0 A

number and on 6/X. Examination of the equation for pl(k,O),

equation 74, shows that the singularity is associated with

a zero of the denominator, i.e.

b Tll + T 21 = 0, 117.

A A -l

and is of the form Ic - c0- 1 . Numerical values of the inte-

grands of B
1 1

and I1 (an integral involving pl(k,0) to be

discussed in a later section of this paper) are shown in

figure 8. Figure 8 indicates also that the singularity has

the form Ic - c
0
1-1. The appearance of this singularity for

a real value of c indicates that the function being trans-

formed - p(x,O) - has some sort of non-regular behavior, such
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as not becoming zero for large x, for the value of c at

the singularity. Consequently the transforms, equation 46,

must be regarded in a generalized sense and their existence

established by an extension of the Fourier integral theorem

as discussed in reference 33. The result of this general-

ization is that the variable c or k must be regarded as a

complex variable, the integral involving pl(k,O) must be

regarded as a contour integral, and the path of integration

must be carefully chosen so that appropriate boundary

(radiation) conditions are satisfied.

Referring to equation 112, p. 53, shows that an inverse
O ^

transform of the function pl(k,O) must be performed to ob-

tain the pressure on the plate surface p(x,O,t). Comparison
O ^

of equation 73 with 74 shows that pl(k,O) can be written

Pl(k,O) = - 1 -- (1+Mc)2 + T2 2

T1 1 6 /2 2 +
cT -_ (1+Mc) + T21

provided that the square root is handled properly to yield

the form in equation 73 when the radical changes sign.
O ^

Equation 118 shows that pl(k,O)has two branch points in

addition to the simple pole resulting from the vanishing

of the denominator. Writing the radical in the form

c - (l+Mc)2 /1-M2 /c + (M+1)1 /c + (M-1)

119.
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2 ^
shows the branch points to be at c = -3 and c = 2 when Mach

number M is 0.5. These branch points and their corresponding

branch cuts are shown in figure 9 along with the pole and the

chosen path of integration. The location of the branch cuts

was chosen so that the radical would assume the correct form

for real values of c as demanded by equations 73 and 74. The

path of integration was indented below the pole for the follow-

ing reason. Assume the integration for p(x,0,t), equation 112

was to be performed by contour integration for positive x.

With the path closed in the upper half c plane the integral

around c = infinity would vanish by Jordan's Lemma and the

residue of the pole would be included with a contribution from

integration along the branch cut and any other singularities pres-

ent. It can be shown that the residue from this pole contri-

butes a wave that propagates in the positive x direction; this

wave satisfies the outgoing wave radiation condition and is

appropriately included only for positive x.

In view of the path of integration shown in figure 9,

the integration of equation 112 must be broken up into

Cauchy principle parts along the real axis and integration

along the semi-circles around the poles and branch points.

The Cauchy principle part of the integration along the real

axis was carried out numerically using a 10-point Runge-

Kutta for region away from the singularity (pole) and

a rectangular rule using the value of the function
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at the mid-point of the interval in the region including the

pole. The limit was taken by increasing the number of inte-

gration steps with a fixed c interval until the value of

the integral was unchanged by doubling the number of steps.

As the number of steps was increased the values of the

function for symmetrically placed steps (with respect to

the pole) became closer and closer together in absolute

value near the singularity (as the function x would be for

x = +1 and x = -1) but having opposite signs and thus

canceling out each others contribution to the integral. The

integral on the semi-circle around the pole was evaluated

using the half-residue in accordance with theorem IV, p.

530 of reference 34. The integrals on the semi-circles

around the branch points are always zero according to

theorem III, p. 530 of reference 34.

The numerical values presented in this paper were cal-

culated using the equations presented in Tables I to V. A

sample of the functions integrated as indicated in Table II

is shown in figures 10-13. These figures show that the

values of the integrands are small near the ends of the c

interval shown, indicating that integration over this inter-

val will give correct values of the integrals.
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TABLE I: Complete Pressure Coefficient - Including Integral

and Singularity Contributions

A. Complete Pressure Coefficient CC is given by:
P

2 2 r _

C p = +iXRs2a
1
| C42) p(X)+ialReSl- 42 eslRes2

I-1
where

Res 1 = - Z* eikX(b T T12+T21) =
1 12 22 11 21 k=

I-2

Res 2 = [A [(Zl)2 +(Zc)2 ] (b T1 2 +T2 2 (b T +

1
al 4 2

B. To obtain:

Cp (x)
P

b, T. 

d- [b T
1 1

+ T 2 1 ]

r cBl l, Bl

C. The quantitiy k0 is the value

21 = 0.

T21 k= k
0

[lBr n2 ) 1 r 2 22

11 Bl l _2 11 Tr 2_Q2

See Table:

II

III or IV

V

II

of k satisfying b Tll

I-3

I-4

+
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TABLE II: The Integral Part of Pressure Coefficient C p(x)

A. The magnitude R(x) and phase O(x) of the pressure co-

efficient (integral part) are given by

R(x) =2 + C (x))] II-1

AC (XI

4(x) = tan-1 C II-2
Cr(x)
p

r C
Cp ( x) = Cr( x) + i C II-3
p P p

and c

Ir+ i IC2 2

P (X) 2 11 4 2

C(I1 + i I1 ) II-4a1X~ 1 II-4

where

20

r jX f (Zr 2 + 2 61-
Z + (Zc) J T- dk, II-5

-20
20 6

BCll= J (Z) + (z) 2] A dk, II-6

-20 A

r= . . 1+ cos k II-7
c 2 -2 '

c sin -k
r- j2



TABLE II (concl.)

r T12 6Pr T 112 - )( cos kx + z sin
I1 =2-T 1

20
AA ^A A

(Zr sin kx - Zc cos kx) dk

-20

20

I1 =f J T1 1 (Z
1

cos kx + Z1 sin kx) dk

-20

rsin kx- C+ I2 l 
6
Pr T 1

B. To obtain:

6pr 6Pc
X ' X ' Tij

See Table

III or IV

C. The values of T11 and T1 2 are,

i) z = 0

ii) z = 1

Tll = 1, T12 = 0 II-11

Tll = Tll T12

65

kx dk

II-9

kx dk II-10

II-12
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6pr 6Pc
TABLE III: Pressure Coefficients -- , --- by Series Solution

A. Pressure Coefficients are determined by:

i) when a2 > 0

6pr 6Pc
+ it I

6 i a T1 2 + T22

A i a T
1 1

+ T2 1

III-1

2ii) when a < 0

6pr + Pc 6 b T 12 + T 22

+ i X X b Tll + T21

B. To calculate Tll, T2 1:

III-2

Tll = 1 + a2 + a 3

N

+ a4 + 

n=5

T21 = 2a2 + 3 + 3a3 +

where a
0

= 1

N

n=5

a1 = 0

62 ^2
a2 2= 2 (1 - c2)

2h

^ 2Mc6 ^2
a3 2 (2 - c)

31

64 ^2 2 62 M2 c
a4 - c) 

244 42
III-5

_.1 ^ 62 ^2an = n(nl)I-(n-l)(n-4)Mc an_ 2 (1 - c ) an_
2

- )an Mn-l 2 n-l

2 2 32Mc- c 2 36 2 c 62 3A3an(3 - c ) a c a - M d anX2 n- 37 X- n-4 x5

an III-3

n an
III-4
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TABLE III (concl.)

C. To calculate T1 2, T2 2:
N

T12 =1 + a2 + a + a4 an III-6
n=5

N

T2 2 1 + 2a2 + 3a3 + 4a4 + E n an III-7
n=5

where a
0
= 0 a

1
1 a2 = Mc

III-8
2 2̂ 2

M 6 ^2 M62 2a3 6 2 (1 - c ) a = 6 (2 -

a
n

= (same as for Tll, T2 1)

D. To determine whether a2 > 0 or a2 < 0 either

i) Test a2 for each value of c, given M, 6, X

ii) Use (for M < 1)

2

a < 0 otherwise

iii) a2 = 6 2 [(1 + M 2 / 2 III-9a [(l + MC) CIII-9

a2 = -b2 III-10

E. For series convergence terms are added until

the new sum divided by the old sum is less than e.

A typical C value is 0.001.
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6p 6Pc
TABLE IV: Pressure Coefficients -- , x , by Runge-Kutta

Numerical Integration

A. The quantities 6r Pc a2 b2 and the sign of a
2

are as given in Table III.

B. The Formulae to calculate Tij are

i) p 11 12 P
a = ap IV-1

z z 21 22 az zz= 1L2 z=O

z =1

n=N N---- ' hN 

0 1 2 n n+l I

Sketch of numerical integration range.

ii) T1 1 T12

[T
2 1 T

2 2
]= [tNll[tN_2]"[t 2 ][tl][to] IV-2T21 T22

I o o h o
iii) [tn ] = I + 6 [A(z

n
) + 4A(zn + 2) + A(z + h)]

h
2

h h 2 o h
6 [A(zn + 2A(Z

n
+) A(z
n

+ h) A( + (Zn

2
3

0 h o o 20 h+ h [A (Zn + 2) A(z
n )

+ A(z
n

+ h) A (Zn + )]

h4 2 h
+ 24 [A(zn + h) A (zn + -) A(zn 3 IV-3

iv) IV-4
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V-5

a(Zn) =

0 1
A(Zn) = ° r 

-b(zn ) a(zn
)

2Mc au + 1 = 2b(z) =(X)2 c 1
+ McU(zn)z PO az Lvc j

IV-6

C. Case 1: Check of previous series results
o o

Velocity profile U (Zn) = Zn

au s 1

azn

Density profile PO(Zn)PO (zn) =

apo

nan

constant

= 0

Sound speed profile
0

c (Zn) = 1

D. Case 2: "Blasius" profile. See Table 7.1, Reference
0

29, n = 8z

o
Velocity profile U(z)

Density profile

= f' (n/8)

= 8 f" (n/8)

o

P0(Z) = constant
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apo
O = 0

az

Sound speed profile

_ 0

c(z) = 1
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TABLE V: Derivative Entering Singularity in Complete

Pressure Coefficient

A. The derivative is determined from

~dk~~~~ 1 21 Ad[bl+T]=A dTl[--(bT + T]I = d [bT + T2 1 ] = X b ̂ .l +
dk T11 T21 dc T11 21 dc

db dT21
1 1 dc -- + dcdc dc

where

db 6 ^2

dc
(l+Mc) 2 ] [(1-M2 )c - M],

dT1 1 da2

dc dc

da
3

da4

d c +
dc dc

N

E dan

n=5 dc '

dT21 2da2
d7 = 2
dc dc

N
3da3 4da4

dc dc n=5n=5

da1
= 0

dc

da
2

62 ^

dc x

da3 1 62 ^2
-- = -.M (2 - 3c
dc 

da
4

1 64 ^2 1 ^ 2

dc =-6 c(l - c ) 2 M C -dc XI

dan 1 62 2 dan 2
(n-l)(n-4) M c (1 n-2

Idc dc

V-1

V-2

and

V-3

da

dc

da
0

- = 0

dc

V-4

V-5

dan
d=

dc

1
n (n-l)
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^ 2 da da a 2 da
Mc- (3 2 n-3 2 ^ 6 2 ndan4 3 3 2 dan-5Mc 2 (3 - 2 _ c -dc
xA dc X dc d dc

1 + n -(( )+ 62 62
+ n(-l)-(n-l) u (n-4)M an_1.+.2c k--~ an_2 -M k-7 (3 -X ~~~X

2c) an-3 -3M2 6
2 an-4

3M3 c2 62x2 n-5

B. In the range of c considered Re {b} > 0, Im {b} = 0

where b = 6[c2 - (1 + Mc)2] I/ X

V-6

V-7
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Chapter IV

Results and Discussion

Numerical results are presented in this Chapter for a

plate-fluid system that can be described briefly as follows.

Referring to figure 1, an elastic flat thin plate lies in the

x-y plane and is surrounded by an infinite rigid plate (baf-

fle) also lying in the x-y plane. The elastic plate is in-

finitely wide, has length L, is simply supported by the

rigid plate at x = 0 and x = L, and is forced by a force

having the distribution

q(x,y,t) = (/TfD/L3) sin 7rx exp (iwt) 120.

This force is orthogonal to all of the uncoupled plate

modes but the first. The forcing frequency u has been

chosen as .95 of the natural (uncoupled) frequency of this

mode and the solution has assumed that the plate responds

only in this mode shape. A frequency change and damping

effect due to the fluid flowing past the plate in the up-

per half z space are allowed for, however. (The lower

half z space is not occupied.) The fluid properties are

considered in two parts. The first part is a uni-direction-

al, boundary-layer flow in the positive x direction that

is independent of the motion of the plate. The second part

has arbitrary direction and is dependent only on the plate

motion. Linear equations governing the second part of the
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fluid properties are obtained by small perturbations of the

governing Navier-Stokes, gas-state, energy, and continuity

equations from the first part of the flow and are solved to-

gether with the plate equation as a coupled set of equations.

Gradients of velocity (and temperature), of the first part

of the fluid flow are present near the plate associated

with a boundary layer; these gradients enter the coupled

plate-fluid equations as variable coefficients. The re-

sults presented here were developed in an effort to determine

the effects of these gradients of velocity on the response

of the plate-fluid system.

Pressure on plate surface

Calculated pressure distributions on the surface of

the plate are presented in figure 14 for three boundary

layer thicknesses. The velocity profile was linear from

zero velocity at the plate surface to Mach number M = 0.5

at z/L = 6, and the velocity was constant at M = 0.5 for

all larger values of z. Figure 14 presents magnitude and

phase of pressure coefficient Cp which is related to pressure

by

p(x,z,t) = p0 c fL ICpl exp (iwt + iW). 121.

The phase angle 0 thus represents time lag relative to the

forcing function, equation 120. Figure 14 shows that the

pressure is largest on the surface of the vibrating plate,

0 < x < 1, where the effect of increasing boundary layer
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thickness 6 is a slight decrease of maximum pressure and a

shift of the distribution toward the upstream edge of the

plate, x = 0. Increasing 6 also increases the pressure

both upstream (x < 0) and downstream (x > 1) of the plate.

The phase angle * is nearly constant over the middle
A

of the plate (x - .5) but varies off the plate. For large

x the phase angle can be expressed by the linear relation

= a + b x 122.

where a and b are constants. Inserting equation 122 into

121 leads to

p(x,z,t) = P0 c fL ICp I exp (ia) exp i L [f t + x]

123.

Equation 123 describes a pressure wave that is moving with

speed c', where

c' = c 124.

Measurement of the slope b from the curves reproduced in

figure 14 leads to the following values for c'.

TABLE VI: Wave speeds from pressure curves

6 = .10 .15 .20

Icc1= 1.43 1.35 1.35

Since b is negative these waves are moving downstream. This

speed is somewhat greater than sound speed c' = c, but some-

what less than the convected wave speed for this Mach number

c' = 1.5 c. This result seems natural in view of the boundary
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layer nature of the mean velocity profile.

In the region upstream of the plate x < 0 the phase

curve can also be represented in part by the linear relation

equation 122. The corresponding slope of the phase curve

is negative, as it is in the region downstream, indicating

that "waves" are coming toward the plate from an upstream re-

gion where no disturbances are supposed to exist. This

result was not anticipated, and is not intuitively satisfying,

since these waves "should" be traveling upstream, and re-

quires further investigation. Great care was taken in the

derivation, solution, and numerical analysis of the equations

to avoid numerical problems, and several checks will be pre-

sented that suggest that these unexpected waves do not arise

from errors in the solution technique or execution. Unusual

wave behavior has been observed previously in problems of

sound propagarion in ducts,(35,36) where the anomaly was

resolved by observing that energy is the true quantity

whose flow must be controlled by a radiation condition, and

that energy and pressure waves do notalways propagate in the

same direction. Investigations along these lines (among

others) should be undertaken with regard to the waves in the

upstream region shown in figure 14.

Check cases M = 0 and 6 = 0

To gain confidence in the methods used to obtain the

results shown in figure 14 the limiting cases of zero
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boundary layer thickness (6 = 0, M = .5) and zero flow

speed (M = 0) were calculated using those methods. The

results are shown in figure 15. No independent solutions

have been found for comparison with these results, it

has been implied(3 7 ) that the results for M = 0 have not

been previously obtained. The results of figure 15 appear

reasonable, and therefore suggest the correctness of the

methods of this paper, for the following reasons. The

pressure and phase angle distribution for M = 0 is symmetric

about x = .5 as would be expected in still air; the pressure

magnitude drops off continuously with distance away from

the plate, and in particular the phase plot indicates that

the pressure waves are propagating away from the plate in

both upstream and downstream directions at very near the

speed of sound, c' = c. The curves in figure 15 for M = .5

and 6 = 0 show that the pressure magnitude has dis-symmetry

that would be expected for the flow situation. The phase

curve shows that pressure waves are propagating away from

the plate in both directions at very near the expected speeds

of .5 c in the upstream direction and 1.5 c in the downstream

direction.

Free Wave Speeds

The wave speeds discussed in connection with figure 14

are the result of two parts of the solution, namely one part

arising from integration over the whole k range and a second
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part arising from the contribution of the residue of the pole

on the path of integration. In the case of figure 15 where

M = 0 or M = .5 and 6 = 0 there are no poles and the wave

nature arises entirely from the integration over k. It is

of interest to determine the nature of the waves associated

with the singularity and their contribution to the total

solution.

The transfer matrix solution, equation 72, of the govern-

ing ordinary differential equation can be re-arranged into

the form

pTll -11 | Pn(k,O) -T12 6Z*
= 12 n 125.

T21 b D n eb -T22 6Zn

In equation 125 the unknowns are Pn and D, and the knowns

are the Tij, b and the Fourier amplitudes Z* of the plate

displacement. When there is no plate motion Z* = 0 and
n

equation 125 has non-trivial solutions only where

b Tll + T21 = 0 (117)

This condition also is responsible for the pole on the path

of the k integration; the pole therefore represents a free

wave solution for waves propagating parallel to a non-moving

plate. In this case the solution of the fluid equation can

be written
p(x,z,t) = h(z) exp i k' (c't + x)
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where the wave length of the wave is, relative to the dimen-

sional boundary layer thickness 6*,

wave length 21kwa - ve 126.
6* - ~

6c
0

and the wave speed is

c' = c 127.

Co

where cO is the value of c satisfying equation 117. Values

of c' determined for various values of y are presented in

figure 16. These waves are downstream-propagating waves as

indicated by the negative values of c. (See figures 11 - 13.)

Figure 16 shows that short wave lengths (small 6) propagate

at about the sound speed c, but long waves (large y) propa-

gate at about the convected wave speed 1.5 c. Intermediate

wave lengths (1 < y < 10) travel at some intermediate speed.

Wave speeds determined from the slope of the phase curve

of the complete solution (figure 14 & 15) are shown as the

square symbols in figure 16, and are seen to be near, but

somewhat below, the free wave speed (phase velocity). The

propagation of energy in free waves is usually associated

with the group velocity, rather than phase velocity. Group

velocity was determined by graphically differentiating the

phase velocity curve in figure 16 and using the formula

c'(group) = c'(phase) d c' (hase)
c c dc . 128.
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The resulting group velocities are shown in figure 16 to be

less than the phase velocity but still between sound speed

c and 1.5 c. The sign of the group velocity is the same as

the sign of phase velocity, indicating that for these waves

the energy is propagated in the same direction as the pres-

sure wave.

The contribution of the residue (representing a free

wave) to the pressure distribution is shown in figure 17,

where pressure distributions calculated using only the in-
A

tegral over k (the dot-dash curves) are plotted along with

distributions including the residue term along with the

integral. Figure 17 parts a), b), and c) shows that

inclusion of the residue decreases the pressure magnitude

ICpl in the upstream region x < 0, and increases the mag-

nitude over the rest of the x region. The changes are not

large especially on the plate, 0 < x < 1. The change of

phase is small for 6 = .2 and 6 = .1. The difference in

phase for 6 = .15 figure 17b appears to be caused by a

phase shift of 360° occuring at a value of x where the pres-

sure is small and the data points widely separated; addition-

al calculations might remove the differences shown. For the

smallest boundary layer value, 6 = .01, shown in figure 17d,

the residue has a large contribution to the total solution.

The residue contribution appears to be of an undesirable na-

ture because it adds a downstream-moving wave in the upstream
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region and because the agreement of this data (figure 17d)

with the limiting case of 6 = 0 (figure 15) is better when

the residue is not included. These results for 6 = .01

may be due to numerical inaccuracies in the integration

over k' since it was observed that the functions integrated

(equivalent to those shown in figures 12 and 13, but for

6=.01) had not become negligible near the ends of the k inter-

val. The k interval was not extended because the

series solution used was divergent outside the interval used.

Plate response

The response of the plate as shown be equation 112 is

harmonic in time and has a half-sine shape over the plate

length. Additional information can be obtained by examina-

tion of the coefficient a1 appearing in equation 112. The

process of analysis leading to equation 111 for al, when

applied to the complete matrix equation 53, leads to the

equation

}[(X1 (1 - pBl ) S2 ] + i [(2 Bll]( al = Q1

129.

The equation for a plate vibrating with an additional mass,

m, added to its own mass pp and with a distributed viscous

damping is derived in appendix B, and is

[Xm (1 +m )Q2] + iQ2[2 r m (1 + ) a
m

130.
Compi of eqain 12 an 13 sue = Qm 'Copaisn f qutins12 ad 30sugetsthaalgP

Comparison of equations 129 and 130 suggests the analogy
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that the effects of the fluid on the plate can be interpreted

as the addition of a surface mass m/p, where

m = -_B 131.
Pp ill

and an added viscous damping C, where

1= 2ll/k /2Xlm-/p 132.

Added mass and damping equivalents from equations 131 and 132

are shown in figures 18 and 19. Figure 18 shows that the

equivalent added mass is positive for small boundary layer

thickness 6 and for the limit case of M = 0 but has various

values for intermediate values .1 < 6 < 1. These results

imply that the resonant frequency of the plate as affected

by the added mass m can be either increased or decreased by

the fluid effects. Similar results have been observed ex-

perimentally.(38) Figure 19 shows that the damping is pos-

itive for the values of 6 used, and is about one-half per-

cent of critical.

Results for Blasius Velocity Profile

The results presented so far have used the linear

velocity profile with the series solution of the ordinary

differential equation. The formulae are given in Table III.

The effect of using a different velocity profile will now be

considered. Use of a different velocity profile than the

simple linear profile requires use of the numerical
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integration method of Runge-Kutta. The formulae for this

method are given in Table IV. In order to check the numer-
6Pc

ical processes the basic pressure integrands 6pr/X and X

were calculated using both series and Runge-Kutta methods

for the linear velocity profile. A (non-typical) example

result is shown in figure 20. In order to determine whether

the differences shown in figure 20 are significant or not

it would be necessary to carry through both solutions to

pressure coefficient distributions; such a calculation has

not yet been carried out. The differences shown in figure

20 were the largest observed between the two methods; for

other values of 6 the curves were close enough that they

could notbe distinguished from each other on the scale used

in figure 20.

Results for a Blasius boundary layer velocity profile

are compared with results for the linear profile in figure

21. Figure 21 shows that curves for the same value of 6/X

for both profiles, say 6/A = 2, do not agree. However, the

curve for 6/X = .8 for the linear profile falls directly on

the curve for 6/X = 2 for the Blasius profile (to the scale

of figure 21). The definition of 6 - boundary layer thick-

ness - is arbitrary however and is different for each velo-

city profile. The actual velocity profiles for 6/k = .8 -

linear profile - and 6/X = 2 - Blasius profile - are compared

in figure 22. Considering the agreement of velocities shown
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in figure 22, the agreement of the pressure parameters for

the two different values of 6 shown in figure 21 is not sur-

prising.

The effect of the velocity profile enters the solution

for plate response and fluid pressure only through the para-

meters Prand Pc The results shown in figure 21 imply

that a linear velocity profile can be used with an appropri-

ate equivalent boundary layer thickness 6 to produce results

that are the same as if a Blasius profile had been used.

Since the Blasius profile is known to be hydrodynamically

stable, it can be inferred that the results presented herein

for the linear velocity profile are valid for some hydrody-

namically stable velocity profile.

Constant Phase Curves

In view of the unexpected results for wave propagation

shown in figure 14, namely that pressure waves appear to be

originating in a region that should be free of disturbances,

it is natural to seek understanding by study of the propa-

gation of the waves. It is emphasized that the propagation

of energy is the property that must be studied for correct

understanding of the fluid behavior and to determine whether

any radiation conditions have been violated. The calculation

of energy propagation is a very complex task in a medium

having velocity gradients and has not been carried out for

the plate-fluid system of this paper. In particular the
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directions of energy propagation cannot be assumed to co-

incide with the direction of propagation of pressure waves.

The direction of propagation of pressure waves can be

determined using the phase plots in figures such as figure

14. Recalling the relation between the phase curve and the

associated wave propagation direction developed in connection

with equations 122-124 leads to the conclusion that the waves

flow "downhill" toward smaller values of *. A phase minimum

such as occurs at 6 = .1 x = -.3 in figure 14 thus takes

on the character of a sink for waves, whereas a maximum of

phase has the character of a source. For non-zero boundary

layer values the maxima and minima of phase shown in figure

14 all occur off of the vibrating plate, whereas the maxima

for the limiting cases of M = .5 6 = 0, and M = 0 all

occur on the plate.

Phase curves for pressure on the plate and at the edge

of the boundary layer (6 = .2) are shown in figure 23, to-

gether with a sketch of possible constant phase curves in-

ferred from those phase curves. Assuming waves flow from

large phase values to smaller phase values, figure 23 also

shows pressure waves originating in the region upstream of

the plate and near the plate surface, where no disturbances

are supposed to exist. The residue contribution has not been

included at the edge of the boundary layer, however the small

differences shown in figure 17a on the plate surface suggest
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that the residue contribution might not be large°
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Chapter V

Concluding Remarks

Resume

This thesis has described a theoretical study of the

harmonic forced response of a thin, elastic, two-dimensional

flat plate that is dynamically coupled to a passing air

stream having a boundary-layer type gradient of velocity.

The solution used a modal series solution of the plate equa-

tion, a Fourier transform of the fluid equation in the di-

rection parallel to the plate surface, and either Frobenius

series or numerical integration solution of the resulting

ordinary differential equation with variable coefficients.

Numerical inversion of the Fourier transform leads to solu-

tions for distributions of pressure over the plate surface

and plate response properties. Numerical results for exam-

ple values of the parameters are presented to illustrate

the method of solution and the effects of the boundary

layer on the fluid pressures and the plate response. Calcu-

lations for the limiting cases of zero Mach number, Mach

number of 0.5 with zero boundary layer thickness, and an an-

alytical solution with zero boundary layer on an infinite

plate that was previously solved by Miles were carried out

to lend confidence in the methods and techniques used herein.
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Conclusions

The calculated surface pressure distributions showed

that varying the boundary layer thickness changed the magni-

tude of the pressure, however the changes were not large for

the parameter values used. The phase of the pressure distri-

bution showed that a pressure wave associated with the bound-

ary layer apparently originates in the region upstream of

the plate where no disturbances are supposed to exist. The

explanation of the origin and nature of this wave was not

determined. Alternate methods of solution, together with

experimental investigation if necessary, should be used to

explain this wave.

Analysis of harmonic wave motion in the fluid with zero

plate motion showed the existence of a pressure wave whose

amplitude decreased exponentially with distances from the

surface (and in this sense roughly analogous to Rayleigh

waves on the surface of a solid). At short waves lengths

these waves travel at the sound speed c of the medium, but

at long wave lengths they travel at the convected wave speed,

1.5 c.

In an effort to display the effects of the fluid on the

plate's dynamic behavior an analogy was developed that show-

ed the fluid effects to be equivalent to adding a distributed

mass and damping to the plate surface. This analogy is com-

monly used in fluid-structure dynamic interaction problems.
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Varying the boundary layer thickness caused significant

percentage changes in the added mass and damping, however,

for the parameter values chosen the maximum added mass was

only 0.1 percent of the plate mass and the added damping

was about 0.55 percent of the critical damping.

The effect of variations in the detail of the velocity

profile was studied by calculating values of the fundamental

"transformed modal pressure" parameter for a linear velocity

profile (velocity of zero at the plate, increasing linearly

out to the edge of the boundary layer and constant from

there outward) and for a Blasius profile. This calculation

showed that the same result could be obtained from each

velocity profile provided that an appropriate value of bound-

ary layer thickness was chosen for each profile. The appro-

priate boundary layer thickness was shown to cause the velo-

cities of each profile to be nearly equal in the region near

the plate.

Recommendations for future work

Further topics of research suggested by these

results include the following:

a) Theoretical and experimental studies to clarify the nat-

ure of the waves apparently originating upstream of the plate.

b) Use of these methods of solution for study of panel

flutter, as an alternative to the time-domain solution methods

used by Dowell.
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c) Use of these methods to search for appropriate fluid-

panel parameters for maximizing damping of the system with

the aim of reducing turbulence in the boundary layer and

thus reducing drag, or with the aim of reducing noise trans-

mitted from a turbulent boundary layer into the interior of

an aircraft.

d) Development of approximate procedures, based on the

methods developed herein, that could be used in engineering

studies instead of these lengthy calculations.
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APPENDIX A.- Perturbation Pressure-Density Relation in a

General Mean Flow

In this Appendix an equation is derived relating the

perturbation pressure to the perturbation density in an

arbitrary mean flow. The appropriate governing equations

are:

(a + u* .V) P* + p*V-u* = 0 A-1

p* = Rp*T* A-2

p*Cv(at + u*V)T* = -p*V u* + (heat) +

(viscosity) A-3

These equations are the continuity, state, and energy equa-

tions governing the total flow quantities denoted by the

"star". In the energy equation A-3 the terms involving heat

flow and viscosity effects are represented simply by (heat)

and (viscosity) because these terms will soon be dropped

from the equations governing the perturbation quantities.

Equation A-1 and A-3 can be combined to eliminate

the velocity term V-u* to obtain

(p*) C D(T*) = p*Dp* + (heat) + (viscosity) A-4

where

D( ) E (a + *.V)( )

Next, using T* from equation A-2 in equation A-4, carrying



115

out the differentiations, and simplifying leads to:

p* D(p*) = y p* D(p*) + (heat) + (viscosity) A-5

Note that if the effects of heat flow and viscosity are

neglected for the total flow then equation A-5 implies that

p* = c2 p*

where c2 = yRT*.

This result is ordinarily used in classical inviscid aero-

dynamics. To obtain the relation between perturbation pres-

sure and density, the relations

P* = P+ P

P* = PO + P'

and u* = U + u

are substituted into equation A-5, and the resulting terms

separated into three groups. One group of terms contains

only basicflow quantities U, p0, p0, and heat flow and

viscosity terms; these terms vanish under the assumption

that the basic flow satisfies equation A-5. The second group

of terms contains squares and products of the perturbation

quantities u, p, p; these terms are dropped under the assump-

tion that the perturbation motion is small enough that higher

order terms are small compared to the first order terms.

The third group of terms are linear in the perturbation
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quantities and provide the desired equation:

d(p) + u · Vp0 + p d(P 0 )/p0 = yRT0[d(p) + u.VPo + pd(P 0 )/p0 ]

A-6

where d( ) = (a + U * V)( ).
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APPENDIX B.- Plate Equations With Damping And Added Mass

In this Appendix the equations governing the response

of a plate having a mass and a damping force added to its

surface are derived. The procedures and notations used in

the body of this paper are used so that the equations ob-

tained here can be compared directly with the equations

obtained in the body of the paper for the acoustically coup-

led plate. These equations are derived to aid in the inter-

pretation of the acoustic-coupled equations.

When a mass m and damping c are added to the forces

acting on an element of the plate, the governing equation is:

DV4w + (pp + m) 2 + c at = q (x,yt) B-1
at

Assuming that the plate motion is independent of y and non-

dimensionalizing changes equation B-1 to

4^ ppL 24 4
a + ( m + ) aw + CL _ q(x,t)L B-2
7- D P 2 D D
ax p at

Next use the orthogonal eigenfunctions of

4 
^

7 m m B-3

and the eigenfunction expansion

N

w (x,t) = an(t) Wn(x) B-4

n=l

to reduce B-2 to
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2am + c am + m a i
2 p ( l+m/p ) at L4 pm pL(l+m/pp)7
at p p p (l+m/p) p p

q (Xt, t)wm (x)dx B-5

By analogy with a single degree of freedom system(32) the

coefficients of equation B-5 can be identified as

p(l+m/pp) = 2wm B-6
p p
2 b
m 44p L4 (l+m/pp)

where wm is the natural (circular) frequency and C is the

ratio of actual damping to the critical value of damping.

Taking the force q(x,t) and the response am(t) to be

harmonic, i.e.

iwt
q(x,t) = q(x)e

B-7

- iwt
a
m
(t) = ame

and introducing equations B-6 and B-7 into equation B-5 leads

to

{A m(1+ ) Q+ ii 2 [2 w (1+p )]}am = B-8

Equation B-8 is to be compared with acoustic coupled plate

results.


